Exact and Approximate Hidden Markov Chain Filters Based on Discrete Observations

نویسندگان

  • Nicole Bäuerle
  • Igor Gilitschenski
  • Uwe D. Hanebeck
چکیده

We consider a Hidden Markov Model (HMM) where the integrated continuous-time Markov chain can be observed at discrete time points perturbed by a Brownian motion. The aim is to derive a filter for the underlying continuous-time Markov chain. The recursion formula for the discrete-time filter is easy to derive, however involves densities which are very hard to obtain. In this paper we derive exact formulas for the necessary densities in the case the state space of the HMM consists of two elements only. This is done by relating the underlying integrated continuous-time Markov chain to the so-called asymmetric telegraph process and by using recent results on this process. In case the state space consists of more than two elements we present three different ways to approximate the densities for the filter. The first approach is based on the continuous filter problem. The second approach is to derive a PDE for the densities and solve it numerically and the third approach is a crude discrete time approximation of the Markov chain. All three approaches are compared in a numerical study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact filters for doubly stochastic AR models with conditionally Poisson observations

In this paper the authors derive exact filters for the state of a doubly stochastic auto-regressive (AR) process with parameters which vary according to a nonlinear function of a Gauss–Markov process. The observations consist of a discrete-time Poisson process with rate a positive function of the Gauss–Markov process. The dimension of the sufficient statistic increases linearly with the number ...

متن کامل

Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain

 In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...

متن کامل

On the asymptotic variance in the Central Limit Theorem for particle filters

Particle filters algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. Given a set of observations, the asymptotic behaviour of particle filters, as the number of particles ...

متن کامل

An Introduction to Hidden Markov Models and Bayesian Networks

We provide a tutorial on learning and inference in hidden Markov models in the context of the recent literature on Bayesian networks. This perspective makes it possible to consider novel generalizations of hidden Markov models with multiple hidden state variables, multiscale representations, and mixed discrete and continuous variables. Although exact inference in these generalizations is usuall...

متن کامل

Factorial Hidden Markov

One of the basic probabilistic tools used for time series modeling is the hidden Markov model (HMM). In an HMM, information about the past of the time series is conveyed through a single discrete variable|the hidden state. We present a generalization of HMMs in which this state is factored into multiple state variables and is therefore represented in a distributed manner. Both inference and lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1411.0849  شماره 

صفحات  -

تاریخ انتشار 2014